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ABSTRACT 

In this paper, the problem of detecting an optical pattern in unknown 

position is considered.    Two detection procedures are investigated--one 

which entails a search procedure,  and one which does not.    The false- 

alarm and false-dismissal probabilities for these two procedures are 

evaluated under certain simplifying assumptions in order to compare 

the two procedures with each other and with the detector which is optimum 

when the position of the pattern is known.    It is shown tnat there is a 

tradc-o££between error rate and information rate.    The procedure 

requiring a search technique processes the data less rapidly, but at 

the same time achieves a lower error rate for a given signal-to-noise 

ratio.    This analysis also applies to the problem of detecting a signal 

with unknown arrival time provided that the assumptions stated herein 

are satisfied. 
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INTRODUCTION 

An important problem in optical data processing is that of 

determining whether or not a particular pattern is present in the 

image plane of an optical system.    Various versions of this problem 

obtain     depending on the prior knowledge available about the pattern 

to be detected and the noise in the system.    The methods of statistical 

decision theory [1] can be used to derive optimum detection procedures 

which depend on this prior information and on the costs of the different 

types of errors. 

In this pap^r we first review briefly some known results pertaining 

to the detection of a pattern which is exactly known in the presence of 

additive white Gaussian noise.    We then relax the assumption that the 

position of the pattern in the image plane is known while retaining the 

assumption that its shape is known.    Two detection procedures for this 

modified problem are considered,  one which entails searching for the 

pattern and one which does rot.    Under certain simplifying assumptions, 

the false-alarm and false-dismissal probabilities are evaluated as 

functions of signal-to-noise ratio for each of these procedures.    These 

probabilities are compared with each other and with the false-alarm 



and false-dismissal probabilities obtained using the optimum detrctor 

when the signal position is known.    It is shown that there is a trade-off 

between information rate and error rate.    If the procedure requiring 

search is used,  it takes longer to process the data,  but at the same 

time the error rate is reduced.    The choice of a procedure will depend 

on the signal and noise parameters and on the performance required. 



DETECTION OF A KNOWN PATTERN 

In this section,  we briefly review some known results for the 

detection of a known signal or pattern.    These results will be useful 

for purposes of comparison in later sections. 

The problem we treat is the following:   Let X(|;   -n) be the observed 

intensity distribution in the image plane,  where | am, t] are the image- 

plane coordinates.    The object of the detector is to deterniine whether 

X(^,  rj) consists of nc-'se alone (X = N) or of signal plus noii e {X = S + N), 

where S||, TJ) is exactly known to the detector. 

By employing an appropriate sampling procedure [2,  3], we can 

represent the functions X(i, TJ),  N(|, TJ) and S(|, r\) by the finite- 

dimensional vectors X-[*      )»^f=(*      }* and ^ := (   »      ) 
^    m' ^ m/ V    rn 

The noise samples n, ,. n     are assumed tc be independent Gaussian 
I m 

random variables with mean zero and variance one. 

It has been shown [4] that the optimum detector for this problem 

computes ihe quantity 

L(X) = X'S (1) 

where X' is the transpose of X,  and compares it with a threshold.    If 
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this threshold is exceeded, the pattern is said to be present. Otherwise, 

it is decided that noise alone is present. This is the well-known matched 

filter or correlation detectoi. 

J£y is the threshold described above, the false-alarm and false- 

dismissal probabilities are 

P(FA) = P[X'S >y   N alone] (2) 

and 

P(FD) = P[X'S   <Y   S + N] (3) 

These probabilities are easy to evaluate in the present case [4].   Curves 

are plotted in Fig«* es 1-4 for comparison with similar curves obtained 

when the position of the signal is not known. 



DETECTION OF A SIGNAL IN UNKNOWN POSITION-- 

SEARCH TECHNIQUE 

In many applications,  it is realistic to assume that the shape of 

the pattern to be detected is known, but that its exact position is not. 

In this paper, we assume that the orientation as well as the shape is 

known but allow an unknown translation.    Any detection scheme for 

this situation will, of course,  suffer a certain amount of degradation 

due to the additional noise which the position uncertainty allows to 

enter the system.    Twu questions occur in connection with this problem. 

First,  how much degradation do various schemes suffer relative to 

the optimum known-position detector?   Second, how do these schemes 

compare with one another?   In this section and the next,  we consider 

and compare two such schemes- 

In optical data processing,  the correlation detector or matched 

filter can take the form of a mask with the same shape as the pattern 

to be detected.    The amount of light which passes through the mask is 

the quantity on which the decision is based.    If the position of the 

pattern (if it is present) in the image plane is known,  the mask is 

simply placed in that position and the transmitted light compared with 

the threshold. 



If the position of the pattern is not known, the r.bove dotectioa 

procedure mu.'t be modified.    The optimum procedure under certain 

reasonable assumptions about the prior knowledge is not difficult to 

obtain inathcmaticaily, but it is rather complicated to instrument and 

extremely difficult to evaluate.    Hence,  this optimum procedure is 

not considered in this paper.    Instead,  two reasonable sub-optimum 

detection procedures are considered and compared. 

When the position of the pattern in the image   ■'lane is not known, 

a reasonable way to modify   he matched-filter  letection procedure 

is to move the mask around and compare successive outputs with 

threshold.    If the output exceeds the threshold in any one position, 

say the pattern is present.    Otherwise,   say noise alone is present. 

If the dimension of the signal vector is greater than one tnd if 

all possible signal positions are searched,  there will be overlap in 

the matched-filter outputs.    The random variables involved are then 

dependent,  and evaluation of system performance becomes very 

complicated.    The essential features of the problem are preserved, 

and performance evaluation is made tractible,  if it is assumed that 

the signal vector consists of just one non-zero sample.    The output 

random variables in different positions will then be independent,  and 

the false-alarm and false-dismisaal probabilities can be evaluated 

qvlte easily. 



To be more specific,  we consider the following problem.    A vector 

X = f I      j    is presented to a üitector whose objective is to determine 
^ m 

whether X consists of noise alone or of signal plus noise.    If noise 

alone is present,  we have x. = n. for all i = 1,  .... m,  where the n. 

are independent Gaussian random variables with zero mean and unit 

variance.    If signal is present, we have x. = n, for all i = I,..., m, 

except i = j,  and x. = e + n..    s is a known scalar, but j is not known. 

That is,  the position of the signal in the image plane is not known. 

The following detection scheme is used.    Compare each x. with 

a thresholdy.    If all of the x. are less thany,  choose noise alone; 

if at least one x. >y, choose signal plus noise.    Note that this procedure 

is equivalent to moving the matched-filter mask around as described 

above,  since matched filtering in this case corresponds to scalar 

multiplication. 

The false-alarm and false-dismissal probabilities for this 

detection procedure are quite easy to evaluate.    We have 

P(FA) = P -at least one x. >7 I   noise alone ;• 

a I - P WaU x, <'Y    noise alone - 

= 1 -[PCnf-y)]*71 (4) 
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where n is a Gaussian random variable with zero mean and unit variance. 

For a given m,  the threshold-y can be chosen to yield any preassigned 

false-alarm probability,  y having thus been determined,  the false- 

dismissal probability can then be calculated as a function of the signal 

strength s as follows. 

"^ P(FD) = P ^all x. < 7   I S + N ^ 1 - '    I -    - J 

= P(u:<Y)[P(n<7)]m"1 (5) 

where n-N(0,   1) and u -N^s,   1).    This can also be written 

P(FD) = P(n<T - s)[P(n<-v)]
m'1 (6) 

These probabilities can be easily evaluated using a table of the unit 

normal distribution function.    Plots of P(FD) as a function of a f^r 

P(FA) = . 01 and P(FA) = 0.1 and various values of m are shown in 

Figures 1-4, 



DETECTION OF A SIGNAL IN UNKNOWN POSITION 

WITHOUT SEARCH 

One disadvantage of the procedure described in the previous section 

is the time required to search for the signal.    This reduces the rate at 

which data can be processed.   It would be desirable to have available a 

method of detection which is independent of the exact position of the 

pattern and which does not entail a search procedure.   One such method 

has been considered by Horwitz and Shelton [ 5],    This procedure is 

briefly described here, and its performance is evaluated for a special 

case and compared with those of the optimum known-position detector 

and the search procedure. 

To motivate this detection procedure,  consider a one-dimensional 

signal s{| - |  ).   Suppose that s(|) is an exactly-known signal having 

Fourier transform S(f) but that £    is unknown.   For anv fixed £  , the 
o ' o 

Fourier transform of s(4 - |  ) is e"^^0 S(f).    Clearly, the square of 

the magnitude of this quantity,  which is just the energy spectral density 

of the signal s(£ - |  ),  is independent of the unknown position ^   ,    Hence, 
o * o 

this energy spectrum can be used in various ways to detect a signal in 

unknown position. 

In the detection procedure considered in [5],  the detector simply 

cross-correlates the energy spectrum of s(^),    S(f)    ,       th the energy 
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spectrum of the observed waveform,    X(f)j  .    If the pattern is present, 

jX(ri   will consist of js(f)l   plus a noise term regardless of the 

position of the signal.    Hence, this scheme is effective for essentially 

the same reasons that the ordinary correlation receiver is effective. 

The noise term is increased due to the uncertainty in position, however, 

and this noise is no longer Gaussian. 

In order to evaluate this procedure,  it is convenient to obtain an 

expression for the detector output in terms of autocorrelation functions 

rather than energy spectra.    By Parseval's theorem,  the output of 

the detector can be expressed as [ 5] 

m»l 
V«    S    R(i)R(i) (7) 

i=-m+l 8 X 

where the discrete autocorrelation functions R (i) and R (i) are given L y 

m 

V" ■ £   Yi+i (8) 

and 
m 

R (i) ^    S    x.x.   . (9) 
x i=l     J 1+J 

The detector output can be express  d as a quadratic form in the 

var.ables x. as follows: 
i 
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m-i m 

Vs    E    R (i)    2    x.x.. (10) 
i=.m+l 

S        ^    J  1+J 

In matrix form. 

V«X'RX (11) 

where 

SMr   ).  r    =:R (li-jj ) (12) 
i 

Quadratic forms of this type in Gaussian random variables have 

been treated by Middleton [6],   Although the characteristic function 

can be found for a general quadratic form of this type, the probabiHty 

density function can be found only for certain special cases.   If m is 

large,  V becomes approximately Gaussian, but it is dangerous to use 

this approximation to compute error probabilities.    The approximation 

is at its worst in the tails of the distribution, and it is precisely in 

these tails that the information regarding error probability lies. 

Rather than resort to this questionable approximation, we consider a 

special case for which the probability density functions can be found 

exactly. 

We assume that the signal S is such that R (i) is zero or approxi- 
s 

mately zero for i ^ 0,    This will be true in particular if S consists 
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of a single signal sample.   Since this is precisely the case for which 

the search procedure was evaluated, we wiU be able to compare the 

two procedures directly in similar circumstances. 

With this as background, we now state explicitly the problem to 

be solved.    Let X =f I    j   be the observed vector.    The purpose of 

the detector is to use this observation to determine whether or not a 

known scalar signal s is present.   If noise alone is present, x ,. 

are independent Gaussian random variables with mean zero and unit 

variance.   If signal is present, one of the x. is Gaussian with mean s 

and variance unity, and the rest, as before, are Gaussian with mean 

zero and unit variance.   As in the case of noise alone, all the x. are 

assumed to be independent» 

The detector computes the quantity V = X« X and compares it 

with a threshold ry.    If V >yt the pattern is «aid to be present.    Other- 

wise,  it is said to be absent.    Hence 

P(FA) = P   V>Y 1 N (13) 

P(FD) s P{V<7 j  S + N (14) 

In order to evaluate these probabilities,  we must first obtain the 

conditional probability donRiiy Xunrtions f(V | N) and f(V' S + N). 
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2 2 2 
When noise alone is present,  V = X'X s x,    + x." + ...   + x 

——        1 2 m 

is just the sum of squares of m independent Gaussian random variables 

with zero mean and unit variance.   Hence,  V is a chi-square random 

variable with m degrees of freedom.    The conditional PDF of V when 

noise alone is present is 

f■<v'2'(m/^,"1  fSzT'V^ 
f(V|N) = J [15) 

I 0 ,  V < 0 

The false-alarm probability is 

00 

P(FA) =     r   f(V|N)dV (16) 

a quantity which may be obtained from tables of the chi-square 

distribution [ 7]       % i before, we choose -y such that P(FA) = . 01 and 

P(FA) = 0.1 for various values of m and then plot P(FD) as a function 

of signal strength for these values of ^ and m. 

When signal is present, the quadratic form V = X'X computed by 

the detector is a special case of a form treated by Middleton [6].    From 

his (17. 32b) and problem 17.9,  we see that in our notation the conditional 

characteristic function of V in the presence of signal plus noise is 
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fW|stN)e..-.   *   e^|^ (17) 

! 

The conditional probability density function f(V|S + N) is obtained from 

q)(i|| S + N) by taking the Fourier transform.    This quantity can be 

obtained from pair 650. 0 of Campbell and Foster [ 8] upon making the 

change of variable P = -2i|.    This yields 

/' 2   
«irtc.i.jvn        (l      -s   /2/,ry   2v(m-2)/4   -V/2 /     2 f(V}S + N) = .-- e (V/s ''   e I    .,  .TVs  ),  V>0      (18) 

0, V<0 

Where I   is a modified Bessel function of the first kind, order v. 

The false-dismissal probability for this detection scheme is 

P(FD) =     T   f(V|S + N) dV 

-oo 

I      -s2/2    f .„. 21(m-2)/4   -V/2 
= f .- " y (v/sT1 "" • '"^/z.j^O av (19) 

o 

Integrals of this type have been treated by Marcum and Swerling [ 9] 

in connection with radar detection. From (100b) of [9], we see that 

P(FD) can be expressed in terms of the incomplete Toronto function. 
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In our notation, 

P(FD) - Tpy2 (m-i, m/2-lf  S/N/T) (20) 

Curves giving values of the incomplete Toronto function for various 

values of Y,  sf and m are contained in [ 9],  Figures 13-32.    Using 

these curve s, we obtain P(FD) as a function of signal strength for 

various values of m and for values of y corresponding to P(FA) = 0. 01 

and P{FA) =: 0.1.    These values of P(FD) are plotted in Figures 1-4, 

along with corresponding values for the optimum known-position 

detector and the search detector. 
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CONCLUSIONS 

The essential conclusions are in agreement with intuition.    Lack 

of position information inevitably leads to a higher error rate.   Searching 

for the signal yields a lower information rate, but also a lower error 

rate,  than a system which processes the information instantaneously. 

Figures 1-4 provide quantitative information regarding this trade-off. 
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